Ta có: \(\dfrac{2x+3}{3}-\dfrac{x}{7}=\dfrac{5-x}{3}\)
\(\Leftrightarrow\dfrac{7\left(2x+3\right)}{21}-\dfrac{3x}{21}=\dfrac{7\left(5-x\right)}{21}\)
\(\Leftrightarrow14x+21-3x=35-7x\)
\(\Leftrightarrow11x+21-35+7x=0\)
\(\Leftrightarrow18x-14=0\)
\(\Leftrightarrow18x=14\)
\(\Leftrightarrow x=\dfrac{7}{9}\)
Vậy: \(S=\left\{\dfrac{7}{9}\right\}\)
\(\dfrac{2x+3}{3}\)- \(\dfrac{x}{7}=\dfrac{5-x}{3}\)
\(\Leftrightarrow\dfrac{\left(2x+3\right).7}{21}-\dfrac{3x}{21}=\dfrac{\left(5-x\right).7}{21}\)
\(\Rightarrow14x+21-3x=35-7x\)
\(\Leftrightarrow18x=14\)
\(\Leftrightarrow x=\dfrac{7}{9}\)