Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Chứng minh các đẳng thức :
a)\(\dfrac{\left(\sqrt{x}1\right)^2+4\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}}=2\)
b)\(\dfrac{1-x}{1-\sqrt{x}}-\left(1-\dfrac{1}{\sqrt{x}}\right)\cdot\sqrt{x}=2\)
MỌI NGƯỜI GIẢI CÂU NÀY GIÚP MÌNH VỚI!!!!!
Rút gọn:
1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}\)
\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right).\dfrac{a-4}{\sqrt{4a}}\)
\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)
\(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)
Làm chi tiết giúp mình với vì mình yếu phần này lắm
Giải các phương trình sau
a) \(-x^2+4\cdot x+1=2\cdot\sqrt{2\cdot x+1}\)
b) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
c) \(5\cdot x^2-2\cdot x+1=\left(4\cdot x-1\right)\cdot\sqrt{x^2+1}\)
d) \(\left(2\cdot x-1\right)\cdot\sqrt{10-4\cdot x^2}=5-2\cdot x\)
e) \(\sqrt{2\cdot x-1}-\sqrt{x+1}=2\cdot x-4\)
f) \(\sqrt{x^2-2\cdot x}+\sqrt{2\cdot x^2+4\cdot x}=2\cdot x\)
cho biểu thức A=\(\left(\dfrac{4x-9}{2\sqrt{x}-3}+\sqrt{x}\right)\cdot\dfrac{1}{x+2\sqrt{x}+1}\)
a)rút gọn
rút gọn
tính giá trị của nó với x=\(\dfrac{1}{\sqrt{2}-1}\)
tìm giá trị của x để M có giá trị âm
\((\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1})\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
B=\(\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
a) \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
b) \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
Giải phương trình:
a) \(2\sqrt{x}\) + 1 = \(\sqrt{2}\) = 5
b) \(\dfrac{\sqrt{x-1}}{\sqrt{x-2}}\)= \(\dfrac{1}{2}\)
c) \(\dfrac{1}{\sqrt{x-3}}\) = \(\dfrac{2}{\sqrt{x-5}}\)
Tính giá trị của P = \(\left(\dfrac{\sqrt{x-1}}{3+\sqrt{x-1}}+\dfrac{x+8}{10-x}\right):\left(\dfrac{3\sqrt{x-1}+1}{x-3\sqrt{x-1}-1}-\dfrac{1}{\sqrt{x-1}}\right)\)khi x=\(\sqrt[4]{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\dfrac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)