Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn  Phạm Hoàng trang

\(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}+\sqrt{z-665}\)

DƯƠNG PHAN KHÁNH DƯƠNG
25 tháng 8 2018 lúc 13:50

ĐK : \(x\ge3;y\ge1;z\ge665\)

\(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\)

\(\Leftrightarrow\left(\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)=82\)

Theo BĐT Cô Si cho các số dương ta có :

\(\left\{{}\begin{matrix}\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\ge2\sqrt{\dfrac{16\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{16}=8\\\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}}=2\sqrt{4}=4\\\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\ge2\sqrt{\dfrac{1225\sqrt{z-665}}{\sqrt{z-665}}}=2\sqrt{1225}=70\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)\ge82\)

Dấu \("="\) hiển nhiên xảy ra khi :

\(\left\{{}\begin{matrix}\dfrac{16}{\sqrt{x-3}}=\sqrt{x-3}\\\dfrac{4}{\sqrt{y-1}}=\sqrt{y-1}\\\dfrac{1225}{\sqrt{z-665}}=\sqrt{z-665}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=16\\y-1=4\\z-665=1225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)


Các câu hỏi tương tự
Vũ Sơn Tùng
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Cao Thị Thùy Linh
Xem chi tiết
Nguyễn Ngọc Thảo Nguyên
Xem chi tiết
Phan PT
Xem chi tiết
Trần Bảo Bảo
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Trai Vô Đối
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết