Chứng minh: Ta có:
\(A=\dfrac{1}{1}+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}=\dfrac{1}{1}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \)
\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=\)=\(1+1-\dfrac{1}{n}=2-\dfrac{1}{n}\)