Ta có \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BCEF nội tiếp đường tròn đường kính BC. Tâm I của đường tròn này là trung điểm của BC
Ta có \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BCEF nội tiếp đường tròn đường kính BC. Tâm I của đường tròn này là trung điểm của BC
cho tam giác ABC nhọn nội tiếp đường tròn O . các đường cao AD , BE và CF cắt nhau tại H
A/ chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác
B/ đường thẳng EF cắt đường BC tại M và cắt đường tròn O tại K và T ( K nằm giữa M và T ) chứng minh MD.MI=MK.MT
C/ đường thẳng vuông góc với IH tại I cắt các đường thẳng AB,AC,AD lần lượt tại N,S,G . chứng minh G là trung điểm NS
thankkkkkkkkkkkkkkkkkkk
8/81
cho tam giác ABC nhọn nội tiếp đường tròn O . các đường cao AD,BE,CF cắt nhau tại H
A/ chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác
B/ đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn O tại K và T ( K nằm giữa M và T ) . chứng minh MD.MI=MK.MT
C/ đường thẳng vuông góc với IH tại I cắt các đường thẳng AB,AC,AD lần lượt tại N,S,G . chứng minh G là trung điểm NS
thankkkkkkkkkkkkkk
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF cắt nhau tại H. Vẽ tiếp tuyến của đường tròn O tại A. Đường thẳng EF cắt đường tròn O tại I Và K a) CM: các tứ giác BFHD,BFEC nội tiếp b) CM:EB là tia phân giác của góc FED c)CM: OA vuông góc IK d) gọi S là tâm đường tròn ngoại tiếp tam giác BCE,đường thẳng vuô g góc với HS tại S cắt AB tại P, cắt AC tại Q và cắt AD tại G. Chứng minh PG=GQ
Cho tam giác ABC nhọn (AB>AC) nội tiếp (O). Hai đường cao AD và BE cắt nhau tại H. I là giao điểm của AD với đường tròn, K là giao điểm của AO với đường tròn. Chứng minh:
a) Tứ giác AEDB nội tiếp. Xác định tâm đường trong nội tiếp tứ giác AEDB
b) AD. EC= BE. DC
c) BHCK là hình bình hành
d) AB2- AC2= BI2- HC2
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn tâm O . Hai đường cao BE ,CF của tam giác ABC cắt hau tại H
A. chứng minh các từ giác AFHE và BCEF nọi tiếp được , xác định tâm của đường tròn ngoại tiếp
B/ Đường thẳng EF cắt đường thẳng BC tại M , đoạn thẳng AM cắt đường tròn O tại N , chứng minh tứ giác AEFN nội tiếp
C. kẻ đường kính AK của đường tròn O . chứng minh ba điểm N,H,K thẳng hàng
thank :333
\(\rightarrow\) Gấp Ạ!
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF ( bỎ QUA phần này cũng đc ạ )
cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MBHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF
cho tam giác ABC nhọn nội tiếp đường tròn (O;R) , 2 đường cao BE và CF của tam giác ABC cắt nhau tại H . đường thẳng AH cắt BD tại D và cắt (O;R) tại điểm M
a, chứng minh BC là p/g góc EMB
b, gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF . chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE
c, khi 2 điểm B,C cố định và điểm A di động trên (O;R) nhứng vẫn thỏa mãn tam giác ABC nhọn . chứng minh OA vuông góc với EF . xác định vị trí A để tổng DE+EF+FD đtặ giá trị nhỏ nhất