Tìm m để hệ bất phương trình có nghiệm duy nhất
a) \(\left\{{}\begin{matrix}2x-1\ge3\\x-m\le0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}m^2x\ge6-x\\3x-1\le x+5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}mx\le m-3\\\left(m+3\right)x\ge m-9\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}2m\left(x+1\right)\ge x+3\\4mx+3\ge4x\end{matrix}\right.\)
Tìm m để \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+m\) dùng \(\forall x\in\left(-5;3\right)\)
tìm a để bất pt \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng ∀ x ∈ [ -5,3]
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Giải bất phương trình:
a) \(\frac{1-\sqrt{21-4x-x^2}}{x+4}< \frac{1}{2}\)
b) \(\frac{1-\sqrt{8x-3}}{4x}\ge4\)
c) \(4\left(x+1\right)^2\le\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
d) \(\left(\sqrt{x+4}+2\right)\left(\sqrt{2x+6}-1\right)< x\)
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
cho hàm số \(f\left(x\right)=ax^2+bx+c\) thỏa mãn \(f\left(x\right)\le1\) \(\forall x\in\left[-1;1\right]\).
CMR: \(\left|a\right|+\left|b\right|+\left|c\right|\le4\)
Tập nghiệm của bất pt
a) \(\left|x+2\right|+\left|-2x+1\right|\le x+1\)
b) \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\)
c) \(\left|x+1\right|-\left|x-2\right|\ge3\)
d) \(\left|\dfrac{-5}{x+2}\right|< \left|\dfrac{10}{x-1}\right|\)
e) \(\left|\dfrac{2-3\left|x\right|}{1+x}\right|\le1\)
1.Cho \(0\le x\le3,0\le y\le4\). Tìm giá trị lớn nhất của biểu thức:
\(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\)
2. Cho \(a\ge3,b\ge4,c\ge2\). Tìm giá trị lớn nhất của biểu thức :
\(A=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)