a, \(\left|x+2\right|+\left|-2x+1\right|\le x+1\left(1\right)\)
TH1: \(x\le-2\)
\(\Rightarrow x+1\le-1< \left|x+2\right|+\left|-2x+1\right|\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2-2x+1\le x+1\)
\(\Leftrightarrow x\ge1\)
\(\Rightarrow x\in\left[1;\dfrac{1}{2}\right]\)
TH3: \(x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2+2x-1\le x+1\)
\(\Leftrightarrow x\le0\)
\(\Rightarrow\) vô nghiệm
Vậy \(x\in\left[1;\dfrac{1}{2}\right]\)
b, \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\left(2\right)\)
TH1: \(x\le-2\)
\(\left(2\right)\Leftrightarrow-x-2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>-\dfrac{3}{2}\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le1\)
\(\left(2\right)\Leftrightarrow x+2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x< -\dfrac{5}{2}\)
\(\Rightarrow\) vô nghiệm
TH3: \(x>1\)
\(\left(2\right)\Leftrightarrow x+2-x+1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>\dfrac{9}{2}\)
\(\Rightarrow x\in\left(\dfrac{9}{2};+\infty\right)\)
Vậy \(x\in\left(\dfrac{9}{2};+\infty\right)\)
c, Tương tự a,b
d, ĐK: \(x\ne-2;x\ne1\)
\(\left|\dfrac{-5}{x+2}\right|< \left|\dfrac{10}{x-1}\right|\)
\(\Leftrightarrow\dfrac{1}{\left|x+2\right|}< \dfrac{2}{\left|x-1\right|}\)
\(\Leftrightarrow2\left|x+2\right|>\left|x-1\right|\)
\(\Leftrightarrow4\left(x+2\right)^2>\left(x-1\right)^2\)
\(\Leftrightarrow4\left(x^2+4x+4\right)>x^2-2x+1\)
\(\Leftrightarrow3x^2+18x+15>0\)
\(\Leftrightarrow...\)
e, ĐK: \(x\ne-1\)
\(\left|\dfrac{2-3\left|x\right|}{1+x}\right|\le1\)
\(\Leftrightarrow\left|2-3\left|x\right|\right|\le\left|x+1\right|\)
\(\Leftrightarrow\left(2-3\left|x\right|\right)^2\le\left(x+1\right)^2\)
\(\Leftrightarrow4+9x^2-12\left|x\right|\le x^2+2x+1\)
\(\Leftrightarrow8x^2-12\left|x\right|-2x+3\le0\)
Đến đây dễ rồi, xét hai trường hợp để phá dấu giá trị tuyệt đối rồi đối chiếu điêì kiện.