Ta có: x + y + z = 0 (gt)
⇒ x + y = -z
\(x^3+y^3+z\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left[\left(x+y\right)^2-2xy\right]\)
\(=\left(-z\right)\left[\left(x+y\right)^2-2xy-xy\right]+z\left(z^2-2xy\right)\)
\(=\left(-z\right)\left(z^2-3xy\right)+z^3-2xyz\)
\(=-z^3+3xyz+z^3-2xyz\)
\(=xyz\)
\(\)