tìm u1 và q, cho CSN
\(\left\{{}\begin{matrix}u_1+u_2+u_3+u_4=20\\\frac{1}{u_1}+\frac{1}{u_2}+\frac{1}{u_3}+\frac{1}{u_4}=\frac{25}{24}\end{matrix}\right.\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=u_n^2-3u_n+4\end{matrix}\right.\)
Tìm lim\(\left(\dfrac{1}{u_1-1}+\dfrac{1}{u_2-1}+...+\dfrac{1}{u_n-1}\right)\)
Cho dãy un được xác định bởi
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{u_n}{u_n+1}\end{matrix}\right.\) với n=1,2,3,.... Tính
\(\lim\limits_{ }\dfrac{2014\left(u_1+1\right)\left(u_2+1\right)....\left(u_n+1\right)}{2015n}\)
Cho dãy số Un xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{4}\\u_{n+1}=u_n^2+\dfrac{u_n}{2}\end{matrix}\right.\) với mọi \(n\ge1\). Tìm lim Un
Tìm công thức số hạng tổng quát của dãy:
a) \(\left\{{}\begin{matrix}u_1=1;u_2=1\\u_n=u_{n-1}+u_{n-2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_n-5u_{n-1}+6u_{n+2}=4\end{matrix}\right.\)
Cho dãy số \(\left(U_n\right)\) được xác định bởi: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{1}{2}.\left(u_n+\dfrac{2}{u_n}\right)\end{matrix}\right.\), \(\forall n\ge1\). Tìm lim Un
Cho dãy (Un) xác định bởi: \(\left\{{}\begin{matrix}u_1>0\\u_{n+1}=\dfrac{1}{3}.\left(2u_n+\dfrac{a}{u_n^2}\right),\forall n\ge1\end{matrix}\right.\)(Với a>0). Tính limUn
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=u^2_n-u_n+1\end{matrix}\right.\)tim lim\(\Sigma^n_{i=1}\dfrac{1}{u_i}\)
Cho dãy số \(\left(u_n\right)\) : \(\left\{{}\begin{matrix}u_1=\frac{5}{2}\\u_{n+1}=\frac{1}{2}u_n^2-u_n+2\end{matrix}\right.\) với n=1,2,3... Chứng minh rằng \(\lim\limits_{n\rightarrow+\infty}u_n=+\infty\) và tìm \(\lim\limits_{n\rightarrow+\infty}\left(\frac{1}{u_1}+\frac{1}{u_2}+...+\frac{1}{u_n}\right)\) ?