Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 200.000đ nhé!

--------------------------------------------

[Toán.C125+126 _ 22.2.2021]

undefined

[Toán.C127 _ 22.2.2021]

undefined

Hồng Quang
22 tháng 2 2021 lúc 10:07

Bài 286: Bất đẳng thức neibizt khá nổi tiếng :D 

Bđt <=> \(\dfrac{a}{b+c}+\dfrac{1}{2}+\dfrac{b}{c+a}+\dfrac{1}{2}+\dfrac{c}{a+b}+\dfrac{1}{2}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(2a+2b+2c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\right)\ge9\) ( Có thể đơn giản hóa bất đẳng thức bằng việc đặt biến phụ )

Đặt: \(\left\{{}\begin{matrix}x=b+c\\y=c+a\\z=a+b\end{matrix}\right.\) khi đó ta có: \(\left\{{}\begin{matrix}a=\dfrac{y+z-x}{2}\\b=\dfrac{z+x-y}{2}\\c=\dfrac{x+y-z}{2}\end{matrix}\right.\) Bất đẳng thức trở thành: \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( luôn đúng theo AM-GM )

Vậy bất đẳng thức đã được chứng minh. Dấu "=" xảy ra tại a=b=c

Hồng Phúc
22 tháng 2 2021 lúc 12:25

C286.(Cách khác)

Áp dụng BĐT BSC và BĐT \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\):

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{2}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Viêt Thanh Nguyễn Hoàn...
22 tháng 2 2021 lúc 18:20

undefined

Hồng Phúc
23 tháng 2 2021 lúc 18:07

ĐK: \(y\left(2x-y\right)\ge0;5y^2-4x^2\ge0;x\le2;y\ge-1\)

\(\left\{{}\begin{matrix}3\sqrt{y^3\left(2x-y\right)}+\sqrt{x^2\left(5y^2-4x^2\right)}=4y^2\left(1\right)\\\sqrt{2-x}+\sqrt{y+1}=x+y^2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2.\sqrt{3}y.\sqrt{3\left(2xy-y^2\right)}+2.x.\sqrt{5y^2-4x^2}=8y^2\)

\(\Leftrightarrow\left(\sqrt{3}y-\sqrt{6xy-3y^2}\right)^2+\left(x-\sqrt{5y^2-4x^2}\right)^2+3\left(x-y\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}y=\sqrt{6xy-3y^2}\\x=\sqrt{5y^2-4x^2}\\x=y\end{matrix}\right.\Leftrightarrow x=y\)

Khi đó \(\left(2\right)\Leftrightarrow\sqrt{2-x}+\sqrt{x+1}=x+x^2\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Ngố ngây ngô
Xem chi tiết
Ngố ngây ngô
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Ngố ngây ngô
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Ngố ngây ngô
Xem chi tiết