\(x+y+z-3=2\sqrt{x-2}+2\sqrt{y-2}+2\sqrt{z-2}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-2-2\sqrt{y-2}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-2}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-2}=1\\\sqrt{z-2}=1\end{matrix}\right.\)
\(\Leftrightarrow x=y=z=3\)
\(\Rightarrow Q=\sqrt{\left(3-3+1\right)^{2012}}+\sqrt{\left(3-3\right)^{2014}}+\sqrt{\left(3-4\right)^{2016}}\)
\(=1+0+1=2\)