\(=\frac{1}{2}cos\left(\frac{\pi}{2}\right)+\frac{1}{2}cos2a+\frac{1}{2}sin^2a\)
\(=\frac{1}{2}\left(1-2sin^2a\right)+\frac{1}{2}sin^2a\)
\(=\frac{1}{2}-\frac{1}{2}sin^2a=\frac{1}{2}cos^2a\)
\(=\frac{1}{2}cos\left(\frac{\pi}{2}\right)+\frac{1}{2}cos2a+\frac{1}{2}sin^2a\)
\(=\frac{1}{2}\left(1-2sin^2a\right)+\frac{1}{2}sin^2a\)
\(=\frac{1}{2}-\frac{1}{2}sin^2a=\frac{1}{2}cos^2a\)
Rút gọn đơn giản biểu thức A = cos(x-π/2)+sin(x-π)
B = cos (5π/2-x) + sin(9π/2-x) -cos(15π/2+x) -sin(35π/2+x)
Giúp mình Cho cos x=4/5. Khi đó sin(pi/2-x)+1 bằng A 9/5 B 6/5 C1/5 D 8/5
Rút gọn các biểu thức sau :
a) A= 3sin(11\(\pi\) -x) sin(\(\frac{5\pi}{2}-x\)) +2sin(9\(\pi\)+x)
b) B=sin(1980\(^o\)+x)-cos(90\(^o\) -x)+tan(\(270^o-x\)) +cot (360\(^o\) -x)
c) C=-2sin(\(\frac{-5\pi}{2}\)+x)-3cos(3\(\pi\)-x)+5sin(\(\frac{7\pi}{2}\)-x)+cot(\(\frac{3\pi}{2}\)-x)
d) D=tan(x-\(\pi\)) cos (x-\(\frac{\pi}{2}\))cos(x+\(\pi\))
e) E=cos(\(\frac{115\pi}{2}-x\))+sin(\(x-\frac{235\pi}{2}\))+cos(x-\(\frac{187\pi}{2}\))+sin(\(\frac{143\pi}{2}-x\))
f) F= cot(x-\(107\pi\)) cos(x-\(\frac{303\pi}{2}\))+cos(x+1008\(\pi\))-3sin(x-1019\(\pi\))
g) G=cot(19\(\pi\)-x)+cos(x-37\(\pi\))+sin(\(-\frac{31\pi}{2}-x\))+tan(x-\(\frac{47\pi}{2}\))
h) H=cos(1170\(^o\)+x)+2sin(x-540\(^o\))-tan(630\(^o\)+x) cot(810\(^o\)-x)
i) I=\(\frac{sin\left(\pi-x\right)cos\left(x-\frac{9\pi}{2}\right)tan\left(9\pi+x\right)}{cos\left(7\pi-x\right)sin\left(\frac{7\pi}{2}-x\right)cot\left(x-\frac{17\pi}{2}\right)}\)
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
rút gọn:
cos(\(\dfrac{3\pi}{2}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))
cho sin\(\alpha=\frac{3}{4}\) , \(\frac{\pi}{2}< \alpha< \pi\)
tinh A= \(\frac{2tan\alpha-3cot\alpha}{cos\alpha-tan\alpha}\)
1/ \(\alpha\ne\frac{\pi}{2}+k\pi,k\in Z\) chứng minh rằng: \(\frac{\sin^2\alpha-\cos^2\alpha}{1+2\sin\cos}=\frac{\tan-1}{\tan+1}\)
Cho sin a=\(\frac{1}{5}\)và \(\frac{^{\pi}}{2}\)<a<\(\pi\) . Tính cos a , tan a , cot a
Xác định dấu của sin a, cos a , cot a biết :
1/ \(\pi< a< \frac{3\pi}{2}\)
2/ -170o < a< 90o
c/ -\(\pi\) <a<\(-\frac{\pi}{2}\)