1.Cho tam giác ABC cân tại A góc A = 108 độ .Vẽ tia phân giác AD và BE : chứng minh AD = 1/2 BE
2. Chọ hình thang ABCD , AB < CD,AB // CD .M là trung điểm của AB . Kẻ MH // AD ( H thuộc BD). Kẻ MK // BC (K thuộc AC).KE dường thẳng đi qua H và vuông góc với MH.Đường thẳng đi qua K và vuông góc với MK .Hai đường thẳng đó cắt nhau tại I.Chứng minh
MÌNH MỚI HỌC ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG VÀ TAM GIÁC . GIÚP MÌNH NHÉ !
cho tam giác ABC nhọn , H là trực tâm . M là trung điểm của BC . Đường thẳng đi qua H vuông góc MH cắt AB,AC lần lượt tại I;K
CMR : a. tam giác AIH và tam giác CHM đồng dạng ; tam giác AKM và tam giác BHM đồng dạng
b. HI=HK
Cho tam giác ABC có 3 góc nhọn, các điểm M,N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H.
a, nối MN, Tam giác AHB đồng dạng với tam giác nào?
b. GỌi G là trọng tâm tam giác ABC, chứng minh tam giác AHG đồng dạng với MOG
c. Chứng minh ba điểm H,O,G thẳng hàng
cho tam giác ABC nhọn trực tâm H, M là trung điểm của BC. Qua H kẻ đường tahwngr vuông góc vs HM cắt AB,AC theo thứ tự ở E và F.
a) Trên tia đối của tia HC lấy điểm D sao cho HD=HC. chứng minh E là trực tâm tam giác BDh
b) Chứng minh: HE=HF
Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML
tam giác abc cân tại A. D thuộc đoạn thẳng BC, E thuộc tia đối của tia CB sao cho BD = CE. Các đường thăngr vuông góc Bc kẻ từ D và E cắt AB, AC ở M,N. I là gia của MN và BE
. a) Biết AB < BC. Chứng minh A> 60.
b) CM IM = IN.
c) CM đường thẳng vuông góc MN tại I luôn đi qua một điểm cố định khi D di động trên BC
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
Cho tam giác ABC có trực tâm H.Trên nửa mặt phẳng bờ AB chứa điểm C kẽ tia Bx vuông góc với AB, trên nửa mặt phẳng bờ AC chứa điểm B kẽ tia Cy vuông góc với AC, Bx cắt Cy tại D
a) Chứng minh: tứ giác BHCD là hình bình hành.
b)Gọi I là trung điểm của BC. Chứng minh: ba điểm H,I,D thẳng hàng.
c)Đường thẳng vuông góc với BC tại I cắt AD tại K. chứng minh: AH=2IK
cho tam giác ABC nhọn trực tâm H. M là trung điểm của BC. Qua H kẻ đường vuông góc với HM cắt AB , AC tại E và F. Trên tia đối của HC lấy điểm D sao cho HD= HC.
CMR a) E là trực tâm của tg DBH.
b) EH= FE