Ta có: \(4m^2+m=5n^2+n\)
\(\Leftrightarrow5n^2-5m^2+n-m=-m^2\)
\(\Leftrightarrow5\left(n-m\right)\left(m+n\right)+\left(n-m\right)=-m^2\)
\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\left(1\right)\)
Gọi d là ƯCLN( m-n,5m+5n+1)
ta có: \(\left\{{}\begin{matrix}5m+5n+1⋮d\\5\left(m-n\right)⋮d\end{matrix}\right.\)
\(\Rightarrow5m+5n+1+5\left(m-n\right)=10m+1⋮d\)(2)
Ta cũng có: \(\left(5m+5n+1\right)\left(m-n\right)⋮d\Rightarrow m^2⋮d\Rightarrow m⋮d\)
Vậy có: \(10m⋮d\) cộng với (2) suy ra \(1⋮d\Rightarrow d=1\)(3)
Từ (1) và (3) có tích m-n và 5m+5n+1 là số chính phương và 2 số đều lại số nguyên tố cùng nhau nên có ĐPCM (t/c đặc biệt)