cmr: tồn tại n thuộc N sao cho A=\(\sqrt{n-1}\)+\(\sqrt{n+1}\) thuộc Q
Cho biểu thức: \(Q= \left(\frac{1}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right).\left(1+\frac{1}{a}\right)\)
a) Tìm a để Q tồn tại
b) CMR: Q không phụ thuộc vào giá trị của a
cho hai hàm số y = x2 và y=mx + 4, với m là tham số
Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1 ( x1,y1); A2 ( x2,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72
Cho (O),dây AB cố định không đi qua tâm O.đường kính CD vuông góc với AB tại H (C thuộc cung lớn AB) điểm M di chuyên trên cung nhỏ AC (M khác A và M khác C).CM cắt AB tại N nối DM cắt AB tại E a chứng minh tứ giác CMEH nội tiếp b chứng minh NM.NC=NA.NB
Câu 1: CMR: tích của một số chính phương và số đứng ngay trước nó chia hết cho 12
Câu 2: Cho đường tròn (O) và đường kính AB cố định. Gọi M là điểm di động trên (O) sao cho M không trùng với các điểm A và B. Lấy C là điểm đối xứng của O qua A. Đường thẳng vuông góc với AB tại C cắt đường thẳng AM tại N. Đường thẳng BN cắt đường tròn tại điểm thứ hai là E. Các đường thẳng BM và CN cắt nhau tại F. 1. CMR: các điểm A, E, F thẳng hàng 2. CMR: AM.AN không đổi 3. CMR: A là trọng tâm của tam giác BNF khi và chỉ khi NF ngắn nhất
Câu 3: Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. CMR: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Giúp mk với mk xin cảm ơn trước.
Cho hàm số y=(m2-2m+3)x-4 (d) ,(với m là tham số)
1.Chứng minh rằng với mọi hàm số luôn đồng biến trên tập xác định của nó.
2.Tìm m để (d) đi qua A(2;8)
3.Tìm m để (d) song song với đường thẳng (d'):y=3x +m-4
Cho sáu đường tròn có bán kính bằng nhau và có điểm chung. Chứng minh rằng tồn tại ít nhất một trong những đường trong này chứa tâm đường tròn khác
Chứng minh không tồn tại x thỏa mãn phương trình:
x + \(\sqrt{x}\) + 2 = \(\sqrt{x-1}+\sqrt{3-x}\)
Cho hàm số y=2x2 có đồ thị (P)
a, Vẽ đồ thị (P) của hàm số
b, Viết phương trình đường thẳng (d) tiếp xúc với (P) tiếp xúc với (P) tại một điểm có hoành độ x=-1