Có: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Tương tự:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\)
\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng vế theo vế:
\(VT\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)
\("="\Leftrightarrow a=b=c\)