\(\frac{1}{2!}\) + \(\frac{2}{3!}\) + \(\frac{3}{4!}\) +...+ \(\frac{99}{100!}\)
= \(\frac{2-1}{2!}\) + \(\frac{3-1}{3!}\) + \(\frac{4-1}{4}\) +...+ \(\frac{100-1}{100!}\)
= \(\frac{1}{1!}\) - \(\frac{1}{2!}\) + \(\frac{1}{2!}\) - \(\frac{1}{3!}\) + \(\frac{1}{3!}\) - \(\frac{1}{4!}\) +...+ \(\frac{1}{99!}\) - \(\frac{1}{100!}\)
= 1- \(\frac{1}{100!}\) < 1