\(VT=\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
Áp dụng BĐT Cauchy schawazr ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{1}{\frac{2\left(x+y\right)^2}{4}}=4+2=6\)
Vậy đẳng thức đã được chứng minh .
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)