Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Dương

1.Cho các số a, b, c \(\in\left[0;1\right]\). Cmr: \(a+b^2+c^3-ab-bc-ca\le1\)

2. Cho x>0, y>0 và \(x+y\ge6\). Tìm min của \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Nguyễn Việt Lâm
13 tháng 6 2020 lúc 16:19

1.

Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Nguyễn Việt Lâm
13 tháng 6 2020 lúc 16:22

2.

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)

\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)

\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)

\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Scor VIP
Xem chi tiết