cho đường thẳng (d) có phương trình y=(2m+1)x-2,(d) cắt Ox tại A, cắt Oy tại B.Tìm m sao cho
a) khoảng cách từ gốc tọa độ O đến đường thẳng (d) là căn 2
b)Diện tích tam giác AOB = 1/2
cho đường thẳng d: y= ( 2m+1)x-2 với m khác -1/2 giả sử d cắt ox tại a cắt oy tại B. tìm m để diện tích tam giác OAB bằng 1/2
Cho hàm số y = ( m -1).x + 2m – 1 ( m khác 1) có đồ thị là đường thẳng (d)
a) Tìm m để (d) đi qua E ( 3, 8)
b) Tìm m để (d) cắt Ox tại A và Oy tại B sao cho diện tích tam giác ABC vuông cân .
c) Tìm m để khoảng cách từ O đến (d) lớn nhất và nhỏ nhất
Cho đường thẳng mx + (2-3m) y + m -1
a/ Tìm điểm cố định mà d luôn đi qua
b/ Tìm m để khoảng cách từ gốc tọa độ đến B là lớn nhất
c/ Tìm m để d cách các trục tọa độ Ox; Oy lần lượt tại A và B sao cho OAB cân.
Cho đường thẳng y=3x-5 (d)
a) Xác định (d1) vuông góc với đường thẳng (d) và cắt trục Ox tại A, cắt trục 0y tại B sao cho AB=2√10
b) Xác định (d2) biết (d2)// (d) và cắt trục Ox tại C , cắt trục Oy tại điểm D sao cho →diện tích tam giác OCD=6 (đơn vị độ dài)
→ Tạo thành tam giác OCD cân
Bài 1 : Cho đường thẳng (d1):y = -2x và đường thẳng (d2):y = 4x + 1
a. Vẽ hai đường thẳng trên hệ trục tọa độ Oxy.
b. Tìm giao điểm A và B của (d2) với trục hoành và trục tung.
c. (d1) cắt (d2) tại điểm D. Tính diện tích các tam giác OAD, OBD, OAB.
Bài 2 : Cho đường thẳng (d1):y = 2/3x + 4 và đường thẳng (d2) :y = 2x
a. Vẽ hai đường thẳng trên hệ trục tọa độ Oxy.
b. (d1) cắt trục hoành và trục tung tại M và N, (d1) cắt (d2) tại P. Tìm tọa độ M, N, P.
c. Tính diện tích tam giác OMN, ONP và MOP.
d. Dựng Oh vuông góc với (d1) tại H. Tính độ dài MN, OH, HN, HM.
Bài 2: Cho hàm số bậc nhất
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 1
b,Gọi A, B lần lượt là giao của (d) với 2 trục tọa độ. Tìm m để △OAB cân