Do: a+b=1
=> a=1-b
Thay a=1-b vào bất đẳng thức ta có :
(1-b)2 + b2 \(\ge\) \(\dfrac{1}{2}\)
\(\Rightarrow\) 1-2b+b2 + b2\(\ge\)\(\dfrac{1}{2}\)
\(\Rightarrow\) 2- 4b+4b2 \(\ge\) 1
a2+b2\(\ge\)2ab(theo cosi)
<=>2(a2+b2)\(\ge\)a2+b2+2ab
<=>2(a2+b2)\(\ge\)(a+b)2=12=1(do a+b=1)
<=>a2+b2\(\ge\)\(\dfrac{1}{2}\)(đpcm)
Ace Legona,Hung nguyen,Hoang Hung Quan,Xuân Tuấn Trịnh......
ta có
(a-b)2≥0
⇔ a2-2ab+b2≥0
⇔ a2+b2≥2ab
⇔ 2a2+2b2≥a2+2ab+b2
⇔ 2(a2+b2)≥(a+b)2
⇔ 2(a2+b2)≥ 1
⇔ a2+b2≥0.5