Ta có: \(3^{\left(2n+1\right)}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7\)
\(=3.\left(9^n-2^n\right)+2^n.7\)
Ta có: \(9^n-2^n⋮9-2=7\) , \(2^n.7⋮7\)
\(\Rightarrow3^{\left(2n+1\right)}+2^{\left(n+2\right)}\) chia hết cho 7. ( đpcm )
\(3^{2n+1}+2^{n+2}\)
\(=3^{2n}.3+2^n.2^2\)
\(=\left(3^2\right)^n.3+2^n.4\)
\(=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7\)
\(=3\left(9^n-2^n\right)+2^n.7⋮7\)
\(\rightarrowđpcm\)