Lời giải:
\(x^4+y^4\geq x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\geq 0\)
\(\Leftrightarrow (x^4-x^3y)-(xy^3-y^4)\geq 0\)
\(\Leftrightarrow x^3(x-y)-y^3(x-y)\geq 0\)
\(\Leftrightarrow (x-y)(x^3-y^3)\ge 0\)
\(\Leftrightarrow (x-y)^2(x^2+xy+y^2)\geq 0(*)\)
Ta thấy \((x-y)^2\geq 0; x^2+xy+y^2=(x+\frac{y}{2})^2+\frac{3y^2}{4}\geq 0, \forall x,y\in\mathbb{R}\)
Do đó $(*)$ luôn đúng. Ta có đpcm.