cmr: m=a+b+c thì (am+bc)(bm+ac)(cm+ab) = (a+b)2(b+c)2(c+a)2
Cho hình thang vuông ABCD có góc A = góc D = 90 độ; AB = AD = 1/2CD; M trung điểm CD; AC giao BM tại E.
a) ABCM, ABMD là hình gì?
b) Kẻ DI vuông AC cắt AM ở H; AM giao DE tại K. BHDK hình gì?
cho tam giác ABC vuông tại A , AB=4cm , AC=8cm . Gọi E là trung điểm của AC và M là trung điểm của BC
a) tính EM
b) vẽ tia Bx song song với AC sao cho Bx cắt EM tại D . Chứng minh rằng tứ giác ABDE là hình vuông
c) gọi I là giao điểm của BE và AD . Gọi K là giao điểm của BE với AM
chứng minh rằng : tứ giác BDCE là hình bình hành và DC =6.IK
cho tam giác ABC vuông tại A , AB=4cm , AC=8cm . Gọi E là trung điểm của AC và M là trung điểm của BC
a) tính EM
b) vẽ tia Bx song song với AC sao cho Bx cắt EM tại D . Chứng minh rằng tứ giác ABDE là hình vuông
c) gọi I là giao điểm của BE và AD . Gọi K là giao điểm của BE với AM
chứng minh rằng : tứ giác BDCE là hình bình hành và DC =6.IK
Cho tam giác ABC vuông tại A , AC = 8cm BC = 10 cm . Lấy M trên cạnh AB sao cho BM = 4cm . Lấy D sao cho A là trung điểm của CD .
a, Tính AB
b, M là gì của tam giác BCD
c, Gọi E là trung điểm của BC . Chứng minh rằng D , M , E thẳng hàng
cho tam giác abc. am là đường trung tuyến. gọi i là trung điểm của am. tia bi cat ac tại k . biết ac = 9 thì ak=
Cho tam giac ABC cân tại A . Trên cạnh AB lấy điểm M , tên tia đối của tia CA lấy điểm N sao cho BM = CN. Gọi I là trung điểm của MN . CM 3 điểm B, I, C thẳng hàng
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC