\(a^4+b^4+c^4\ge\frac{1}{3}\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2b^2c^2-2c^2a^2\ge0\)
\(\Leftrightarrow a^4+b^4-2a^2b^2+b^4+c^4-2b^2c^2+c^4+a^4-2c^2a^2\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2\ge0,\forall a,b,c\in R\)