Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Con gà 123

Cm: a) x2+y2\(\frac{\left(x+y\right)^2}{2}\)

b) a.b≤ \(\frac{\left(a+b\right)^2}{4}\)

Bạn nào giỏi toán giúp mình với. Thanks nhiều☺☺☺!

Lê Nguyễn Ngọc Nhi
21 tháng 4 2019 lúc 17:42

a) Ta có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(< =>2x^2+2y^2\ge x^2+2xy+y^2\)

\(< =>x^2+y^2\ge2xy\)

\(< =>x^2-2xy+y^2\ge0\)

\(< =>\left(x-y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra <=> x=y

=>(đpcm).

Thục Trinh
21 tháng 4 2019 lúc 17:45

a. \(x^2+y^2-\frac{\left(x+y\right)^2}{2}\ge0\)

\(\Leftrightarrow2x^2+2y^2-\left(x+y\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2=\left(x+y\right)^2\ge0\) (Luôn đúng)

Hay \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\left(Dfcm\right)\)

b. \(ab-\frac{\left(a+b\right)^2}{4}\le0\)

\(\Leftrightarrow4ab-a^2-2ab-b^2\le0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)=-\left(a-b\right)^2\le0\) (Luôn đúng)

Hay \(ab\le\frac{\left(a+b\right)^2}{4}\)

Trần Trường Sinh
21 tháng 4 2019 lúc 17:46

a)\(< =>\frac{2x^2+2y^2-x^2-2xy-y^2}{2}\ge0\)<=>\(\frac{x^2-2xy+y^2}{2}\ge0< =>\frac{\left(x-y\right)^2}{2}\ge0\left(lđ\right)\)

b)<=>\(\frac{4ab-a^2-2ab-b^2}{4}\le0< =>\frac{-\left(a^2-2ab+b^2\right)}{4}\le0\)<=>\(\frac{-\left(a-b\right)^2}{4}\le0\left(lđ\right)\)

Lê Nguyễn Ngọc Nhi
21 tháng 4 2019 lúc 17:47

b) Ta có: \(ab\le\frac{\left(a+b\right)^2}{4}\)

\(< =>a^2+2ab+b^2\ge4ab\)

\(< =>a^2+2ab-4ab+b^2\ge0\)

\(< =>a^2-2ab+b^2\ge0\)

\(< =>\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra <=> a=b.

=> (đpcm).

Có chỗ nào ko hiểu thì cứ hỏi lại nha bn ^-^


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
Nguyễn Thơ
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
khoimzx
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
asuna
Xem chi tiết
bach nhac lam
Xem chi tiết