\(\dfrac{2}{cos^2x}=\dfrac{2\left(cos^2x+sin^2x\right)}{cos^2x}=2+\dfrac{2sin^2x}{cos^2x}=2+2tan^2x=2\left(1+tan^2x\right)\)
\(\dfrac{2}{cos^2x}=\dfrac{2\left(cos^2x+sin^2x\right)}{cos^2x}=2+\dfrac{2sin^2x}{cos^2x}=2+2tan^2x=2\left(1+tan^2x\right)\)
Giải PTLG sau:
\(cos^2x+2\left(sin3x-1\right)sin^2x\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)
\(sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)tan^2x-cos^2\dfrac{x}{2}=0\)
Giải các pt sau:
a) \(\cos^2x-\cos x=0\)
b) \(2\sin2x\) + \(\sqrt{2}\sin4x=0\)
c) \(8\cos^2x+2\sin x-7=0\)
d) \(4\cos^4x+\cos^2x-3=0\)
e) \(\sqrt{3}\tan x-6\cot x+\left(2\sqrt{3}-3\right)=0\)
Giải các phương trình sau
a) \(sin^6x+cos^6x=cos2x+\dfrac{1}{16}\)
b) \(sin^4\dfrac{x}{2}+cos^4\dfrac{x}{2}=\dfrac{5}{2}-2sinx\)
c) \(cos5xcosx=cos4xcos2x+4-3sin^2x\)
d) \(2cosxcos2x=1+cos2x+cos3x\)
e) \(sin3x+cos2x=2\left(sin2xcosx-1\right)\)
Giải các phương trình lượng giác sau:
1) a/ \(cos\left(10x+12\right)+4\sqrt{2}sin\left(5x+6\right)-4=0\)
b/ \(cos\left(4x+2\right)+3sin\left(2x+1\right)=2\)
2) a/ \(cos2x+sin^2x+2cosx+1=0\)
b/ \(4sin^22x-8cos^2x+ 3=0\)
c/ \(4cos2x+4sin^2x+4sinx=1\)
3) a/ \(tanx+cotx=2\)
b/ \(2tanx-2cotx=3\)
4) a/ \(2sin2x+8tanx=9\sqrt{3}\)
b/ \(2cos2x+tan^2x=5\)
5) a/ \(\left(3+cotx\right)^2=5\left(3+cotx\right)\)
b/ \(4\left(sin^2x+\dfrac{1}{sin^2x}\right)-4\left(sinx+\dfrac{1}{sinx}\right)=7\)
giải các pt
a) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)
b) \(\sqrt{3}tanx+cotx-\sqrt{3}-1=0\)
c) \(6sin^2x+2sin^22x=5\)
d) \(cos^22x+cos^2\left(x-\frac{\pi}{4}\right)-1=0\)
e) \(\left(1+tan^2x\right)\left(9-13cosx\right)+4=0\)
\(sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x+1=2cos^2\left(\dfrac{pi}{4}-\dfrac{x}{2}\right)\)
\(cos\left(\dfrac{3\pi}{5}-2x\right)-4cos\left(x+\dfrac{\pi}{5}\right)=\sqrt{3}sin\left(x+\dfrac{7\pi}{10}\right)+2\sqrt{3}\)
Giải phương trình :3
1:\(\left(sin\dfrac{x}{2}+cos\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2\)
2: \(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
3: \(4\left(sin^4x+cos^4x\right)+\sqrt{3}sin4x=2\)
4:\(cos5x-2sin3xcos2x-sinx=0\)