Chuyển động của một vật thể được thể hiện trên mặt phẳng Oxy. Vật thể khởi hành từ \(A\left( {2;1} \right)\) và chuyển động thẳng đều với vectơ vận tốc \(\overrightarrow v \left( {3;4} \right)\).
a) Hỏi vật thể chuyển động trên đường thẳng nào (chỉ ra điểm đi qua và vectơ chỉ phương của đường thẳng đó)?
b) Chứng minh rằng, tại thời điểm t (t>0) tính từ lúc khởi hành, vật thể ở vị trí có tọa độ là \(\left( {2 + 3t;1 + 4t} \right)\).
a) Vật thể đi qua điểm \(A\left( {2;1} \right)\) và đi theo hướng vectơ \(\overrightarrow v \left( {3;4} \right)\).
b) Sau thời gian t thì vectơ vận tốc của vật thể là: \(t\overrightarrow v = \left( {3t;4t} \right)\).
Vậy tọa độ của vật thể sau thời gian t là: \(\overrightarrow {OA} + t\overrightarrow v = \left( {2 + 3t;1 + 4t} \right)\).