\(x^2+y^2+z^2+2x-2y-2z+3\)
\(=x^2+y^2+z^2+2x-2y-2z+1+1+1\)
\(=\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\)
\(=\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\)
Ta có :
\(\left(x+1\right)^2\ge0\) với mọi x \(\in R\)
\(\left(y-1\right)^2\ge0\) với mọi y \(\in R\)
\(\left(z-1\right)^2\ge0\) với mọi z \(\in R\)
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) với mọi x,y,z \(\in R\)
Hay \(x^2+y^2+z^2+2x-2y-2z+3\ge0\) với mọi x,y,z là các số thực