Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau: ax2 + bx +c = a(x - x1)(x - x2).

Áp dụng: Phân tích đa thức thành nhân tử:

a) 2x2 - 5x + 3;                     b) 3x2 + 8x + 2.

Quốc Đạt
4 tháng 4 2017 lúc 16:33

a) Phương trình 2x2 – 5x + 3 = 0 có a + b + c = 2 – 5 + 3 = 0 nên có hai nghiệm là x1 = 1, x2 = \(\dfrac{3}{2}\) nên:

2x2 – 5x + 3 = 2(x – 1)(x2 - \(\dfrac{3}{2}\)) = (x – 1)(2x – 3)

b) Phương trình 3x2 + 8x + 2 có a = 3, b = 8, b’ = 4, c = 2.

Nên ∆’ = 42 – 3 . 2 = 10, có hai nghiệm là:

x1 = \(\dfrac{-4-\sqrt{10}}{3}\), x2 = \(\dfrac{-4+\sqrt{10}}{3}\)

nên: 3x2 + 8x + 2 = 3(x - \(\dfrac{-4-\sqrt{10}}{3}\))(x - \(\dfrac{-4+\sqrt{10}}{3}\))

= 3(x + \(\dfrac{4+\sqrt{10}}{3}\))(x + \(\dfrac{4-\sqrt{10}}{3}\))

Nguyễn Đinh Huyền Mai
4 tháng 4 2017 lúc 17:37
a,) Phương trình 2x2 – 5x + 3 = 0 có a + b + c = 2 – 5 + 3 = 0 nên có hai nghiệm là x1 = 1, x2=\(\dfrac{3}{2}\) nên: 2x2 – 5x + 3 = 2(x – 1)(x2 -\(\dfrac{3}{2}\) ) = (x – 1)(2x – 3) b) Phương trình 3x2 + 8x + 2 có a = 3, b = 8, b’ = 4, c = 2. Nên ∆’ = 42 – 3 . 2 = 10, có hai nghiệm là: x1 =\(\dfrac{-4-\sqrt{10}}{3}\) , x2 =\(\dfrac{-4+\sqrt{10}}{3}\) nên: 3x2 + 8x + 2 = 3(x - \(\dfrac{4+\sqrt{10}}{3}\) )(x -\(\dfrac{4-\sqrt{10}}{3}\) ) = 3(x + )(x + )

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Phan Trần Hạ Vy
Xem chi tiết
Candy Moonz
Xem chi tiết
nguyễn văn quốc
Xem chi tiết
cứuuuu
Xem chi tiết
Võ Văn Kiệt
Xem chi tiết
Anhquan Hosy
Xem chi tiết
Mai Nguyễn
Xem chi tiết
Vũ Vếu
Xem chi tiết