Do p nguyên tố > 3 nên p = 3.k + 1 hoặc p = 3.k + 2 (k \(\in\) N*)
Nếu p = 3.k + 1 thì 2.p + 1 = 2.(3.k + 1) + 1 = 6.k + 2 + 1 = 6.k + 3 chia hết cho 3
Mà 1 < 3 < 2.p + 1 => 2.p + 1 là hơp số, trái với đề bài
Do đó, p = 3.k + 2
Lúc này, 7p + 1 = 7.(3.k + 2) + 1 = 21.k + 14 + 1 = 21.k + 15 chia hết cho 3
Mà 1 < 3 < 7p + 1 => 7p + 1 là hợp số (đpcm)