A=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+....+\frac{5^2}{26.31}\)
=>A=5.(\(\frac{5}{1.6}+\frac{5}{6.11}+....+\frac{5}{26.31}\))
=>A=5.(\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\))
=>A=5.(\(\frac{1}{1}-\frac{1}{31}\))
=>A=5.\(\frac{30}{31}\)
=>A=\(\frac{150}{31}\)
=>A>1( vì tử của A lớn hơn mẫu )
a, gọi ƯCLN(14n+3;21n+5)=d
=> \(\left\{{}\begin{matrix}14n+3\\21n+5\end{matrix}\right.\)⋮d =>\(\left\{{}\begin{matrix}3\left(14n+3\right)\\2\left(21n+5\right)\end{matrix}\right.\)⋮d=>\(\left\{{}\begin{matrix}42n+9\\42n+10\end{matrix}\right.\)⋮d
=>(42n+10)-(42n+9)⋮d
=>1⋮d
=>d=1
Do ƯCLN của 14n+3 ; 21n+5 là 1
=> 2 số trên là hai số nguyên tố cùng nhau
=>hai số đó nếu chia cho nhau thì sẽ ko chia hết
=> hai số đó khi biểu diễn ở dạng phân số thì sẽ thành phân số tối giản
gọi ƯCLN(14n+3;21n+5)=d
=>\(\left\{{}\begin{matrix}14n+3\\21n+5\end{matrix}\right.\)⋮d => \(\left\{{}\begin{matrix}21\left(14n+3\right)\\14\left(21n+5\right)\end{matrix}\right.\)⋮d