\(A=1+5+5^2+...+5^{100}\)
\(5A=5+5^2+...+5^{100}+5^{101}\)
\(5A-A=-1+5^{101}\)
\(4A=5^{101}-1\Rightarrow A=\frac{5^{101}-1}{4}\)
\(4A+1=5^n\Leftrightarrow4\left(\frac{5^{101}-1}{4}\right)+1=5^n\)
\(\Leftrightarrow5^{101}=5^n\Rightarrow n=101\)
\(A=\frac{5^{101}-1}{4}=\frac{5^{101}}{4}-\frac{1}{4}=\frac{B}{4}-\frac{1}{4}< \frac{B}{4}\)
\(C=1.2.3+2.3.4+...+2013.2014.2015\)
\(4C=1.2.3.4+2.3.4.4+...+2013.2014.2015.4\)
\(4C=1.2.3\left(4-0\right)+2.3.4.\left(5-1\right)+...+2013.2014.2015\left(2016-2012\right)\)
\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+2013.2014.2015.2016-2012.2013.2014.2015\)
\(4C=2013.2014.2015.2016\)
\(C=\frac{2013.2014.2015.2016}{4}=...\)