Ta có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế của 3BDT trên
\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) (*)
Ta có
\(\frac{a}{a+b}< 1\Leftrightarrow\frac{a}{a+b}< \frac{c}{c}\Leftrightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự
\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{a+c}< \frac{b+c}{a+b+c}\)
Cộng vế với vế của 3 BĐT trên, có
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{2\left(a+b+c\right)}{a+b+c}=2\) (**)
Từ (*) và (**) => ĐPCM
Chỉ đúng với điều kiện a, b, c dương
\(\frac{a}{a+b}>\frac{a}{a+b+c}\); \(\frac{b}{b+c}>\frac{b}{a+b+c}\); \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng vế với vế:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)
Lại có:
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\); \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng vế với vế:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)