Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

Chứng minh với \(\forall n\in N\)* thì \(1^3+2^3+3^3+...+n^3=\left[\frac{n\left(n+1\right)^{ }}{2}\right]^2\)

Lightning Farron
14 tháng 1 2017 lúc 17:14

\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)(*)

Với \(n=1;n=2\) (*) đúng

Giả sử (*) đúng với n=k khi đó (*) thành

\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

Cần chứng minh (1) đúng, mặt khác ta lại có

\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

Đẳng thức cần chứng minh tương đương với

\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

Theo nguyên lý quy nạp ta có đpcm

Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Nguyễn Tấn Tài
13 tháng 1 2017 lúc 22:01

Ta có : \(1^3+2^3+3^3+....+n^3\)

=\(\left(1+2+3+4+...+n\right)^2\)

=\(\left(\frac{n\left(n+1\right)}{2}\right)^2\) (đpcm)


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Giangs Long
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Nguyễn Ngọc Hà MI
Xem chi tiết