\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(\Leftrightarrow18.3^{2n+1}+3.3^n-2.3^{2n+3}+2.3^n=405\)
\(\Leftrightarrow54.3^{2n}+5.3^n-2.3^3.3^{2n}=405\)
\(\Leftrightarrow3^n=81\)
\(\Leftrightarrow n=4\)
\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(\Leftrightarrow18.3^{2n+1}+3.3^n-2.3^{2n+3}+2.3^n=405\)
\(\Leftrightarrow54.3^{2n}+5.3^n-2.3^3.3^{2n}=405\)
\(\Leftrightarrow3^n=81\)
\(\Leftrightarrow n=4\)
Số tự nhiên n thõa mãn \(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\) là n bằng
Rút gọn C = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
1. Phân tích đa thức sau thành nhân tử : \(\left(x+y\right)^3-x^3y^3\)
2. Chứng minh rằng :
a) \(\left(n^2-1\right)\) chia hết cho 8 (với n là số tự nhiên lẻ)
b)\(\left(n^6-1\right)\) chia hết cho 8 (với n là số tự nhiên lẻ)
Chứng minh với \(\forall n\in N\)* thì \(1^3+2^3+3^3+...+n^3=\left[\frac{n\left(n+1\right)^{ }}{2}\right]^2\)
Chứng minh vs \(\forall n\) nguyên dương thì \(S_n=1^3+2^3+3^3+...+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
THU GỌN BIỂU THỨC SAU
\(\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\)
Tập hợp các giá trị x thỏa mãn
\(3x^n\left(4x^{n-1}-1\right)-2x^{n+1}\left(6x^{n-2}-1\right)\)
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\)luôn chia hết cho 5 với mọi số nguyên n
1) Phân tích đa thức thành nhân tử:
\(\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3\)