Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau:
1) AB=3x,AC=4x,BC=5x (x>0)
2) \(\frac{AB}{3}\)=\(\frac{AC}{4}\)=\(\frac{BC}{5}\)
3) 20AB=15AC=12BC
Chứng minh tam giác ABC là tam giác vuông trong các trường hợp sau:
a) AB = 3x, AC = 4x, BC = 5x (x > 0)
b) AB = 5x, AC = 12x, BC = 13x (x > 0)
c) AB = 40x, AC = 41x, BC = 9x (x > 0)
d) 20AB = 15AC = 12BC
e) 65AB = 156AC = 60BC
Các đường cao của tam giác ABC có độ dài là: 60, 65, 156. Chứng minh rằng: Tam giác ABC là tam giác vuông.
Cho tam giác ABC có góc A nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC ⊥ NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
mik cần gấp
cho tam giác ABC cân tại A ( Â<90 độ). kẻ BH vuông góc với AC ( H thuộc AC) , CK vuông góc AB (K thuộc AB)
a) chứng minh: tam giác ABH= tam giác ACK
b)chứng minh : AH=AK
c) gọi I là giao điểm BH và CK. chứng minh AI là tia phân giác góc BAC
Cho tam giác ABC có ab=5cm,ác=12cm,BC=13cm chứng minh tam giác ABC vuông. Tìm cạnh huyền của tam giác vuông đó
cho tam giác ABC cân tại A (góc A < 90 độ). Vẽ AH vuông góc với BC tại H
a). Chứng minh: tam giác ABH = tam iacs ACH rồi suy ra AH là tia phân giác góc A
b). Từ H vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân
c). Đường thẳng vuông góc với AC tại C cắt tia AH cắt K. Chứng minh: EH // BK
d). Qua A, vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm N sao cho HM = HN. Chứng minh: M, A, N thẳng hàng
Cho tam giác ABC vuông tại A có AB = AC .Lấy điểm I là trung điểm của đoạn thẳng BC . a) Chứng minh Tam giác ABC= TAM GIÁC ACI b) Chứng minh c) Trên tia đối của tia AB lấy điểm E sao cho AE = AB .Hãy chứng minh CB = CE.