\(sinx.cos^3x-sin^3x.cosx\)
\(=sinx.cosx\left(cos^2x-sin^2x\right)\)
\(=\dfrac{1}{2}sin2x\left(cos^2x-sin^2x\right)\)
\(=\dfrac{1}{2}sin2x.cos2x\)
\(=\dfrac{sin4x}{4}\)
\(sinx.cos^3x-sin^3x.cosx\)
\(=sinx.cosx\left(cos^2x-sin^2x\right)\)
\(=\dfrac{1}{2}sin2x\left(cos^2x-sin^2x\right)\)
\(=\dfrac{1}{2}sin2x.cos2x\)
\(=\dfrac{sin4x}{4}\)
Chứng minh:cos^3x.sinx - sin^3x.cosx = sin4x/4
Chứng minh rằng:
a) \(\dfrac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
b) \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{2}{sinx}\)
c) \(\dfrac{1-sinx}{cosx}=\dfrac{cosx}{1+sinx}\)
d) \(\left(1-cosx\right)\left(1+cot^2x\right)=\dfrac{1}{1+cosx}\)
e) \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=sinx.cosx\)
f) \(\dfrac{1+cosx}{1+cosx}-\dfrac{1-cosx}{1+cosx}=\dfrac{4cotx}{sinx}\)
Chứng minh rằng với mọi tam giác ABC ta có:
a) \(SinA+SinB+SinC\le Cos\dfrac{A}{2}+Cos\dfrac{B}{2}+Cos\dfrac{C}{2}\)
b) \(CosA.CosB.CosC\le Sin\dfrac{A}{2}.Sin\dfrac{B}{2}.Sin\dfrac{C}{2}\)
sin^3(1+cotx)+cos^3(1+tanx)=\(\sqrt{2}\)cosx
\(2\sqrt{2}\) sin(sinx+\(\dfrac{\Pi}{4}\))=\(\dfrac{1}{sinx}\)+\(\dfrac{1}{cosx}\)
Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
\(\frac{cos^3x-cos3x}{cosx}+\frac{sin^3x+sin3x}{sinx}=3\)
Chứng minh các đẳng thức sau:
a, \(\sin^4\alpha-\cos^4\alpha+1=2\sin^2\alpha\)
b,\(\dfrac{\sin^2\alpha+2\cos^2\alpha-1}{\cot^2\alpha}=\sin^2\alpha\)
c, \(\dfrac{1-\sin^2\alpha.\cos^2\alpha}{\cos^2\alpha}-\cos^2\alpha=\tan^2\alpha\)
d, \(\dfrac{\sin^2\alpha-\tan^2\alpha}{\cos^2\alpha-\cot^2\alpha}=\tan^6\alpha\)
e, \(\left(1+\cot\alpha\right)\sin^3\alpha+\left(1+\tan\alpha\right)\cos^3\alpha=\sin\alpha.\cos\alpha\)
f,\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-1}{\cot\alpha-\sin\alpha.\cos\alpha}=2\tan^2\alpha\)
CMR :
a) \(\frac{sinx+sin3x+sin4x}{1+cosx+cos3x+cos4x}=tan2x\)
b) \(\frac{sin^22x+2cos\left(3\pi+2x\right)-2}{-3+4cos2x+cos\left(4x-\pi\right)}=\frac{1}{2}cot^4x\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)