Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mai

Chứng minh rằng:

a,  Nếu p và p2+8 là các số nguyên tố thì p2+2 cũng là số nguyên tố.

b,  Nếu p và 8p2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố.

Nguyễn Như Nam
5 tháng 10 2016 lúc 8:34

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

mai
30 tháng 9 2016 lúc 14:00

làm ơn giải hộ mình nhanh lên


Các câu hỏi tương tự
tạ Văn Khánh
Xem chi tiết
Hà Phương
Xem chi tiết
Đinh thủy tiên
Xem chi tiết
tạ Văn Khánh
Xem chi tiết
Hà Phương
Xem chi tiết
Hà Phương
Xem chi tiết
Lê Bảo Thanh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Lê Bảo Thanh
Xem chi tiết