(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
Vì 2ab < (a2 + b2) , 2ac < (a2 + c2) , 2bc < (b2 + c2)
Nên (a + b + c)2 < a2 + b2 + c2 + (a2 + b2) + (a2 + c2) + (b2 + c2) = 3(a2 + b2 + c2)
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
Vì 2ab < (a2 + b2) , 2ac < (a2 + c2) , 2bc < (b2 + c2)
Nên (a + b + c)2 < a2 + b2 + c2 + (a2 + b2) + (a2 + c2) + (b2 + c2) = 3(a2 + b2 + c2)
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
Cho 3 số dương a,b,c thỏa mãn a2 + b2 + c2 = 1
CMR : \(\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\) ≥ \(\dfrac{3\sqrt{3}}{2}\)
a) chứng minh rằng a2 + ab + b2 >= 0 với mọi số thực a , b ; b) chứng minh rằng với 2 số thực a , b tùy ý , ta có a4 + b4 >= a3b + ab3
cho a2 + b2 ≤ 1. Chứng minh rằng ( ac + bd - 1 )2 ≥ ( a2 + b2 - 1 )(c2 + d2 -1 )
chứng minh rằng với mọi số thực a . b . c ta có : ( a + b + c + d / 4 )4 >= abcd
/ : phân số
Chứng minh bằng phản chứng:
a) a, b, c thuộc ( 0; 1). CMR có ít nhất 1 bất đẳng thức sai:
a(1- b) > 1/4 ; b( 1- c) > 1/4 ; c(1- a) > 1/4
b) Cho: x^2 + x(a1) +b1=0 ;
x^2 + x(a2) + b2=0 . Thỏa mãn (a1)(a2) lớn hơn hoặc bằng ( b1 + b2)
b CMR: ít nhất 1 phương trình có nghiệm.
Với mọi số thực dương a,b,c. chứng minh rằng:
4(\(\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\))+8\(\left(\dfrac{c}{\left(2a+b\right)^2}+\dfrac{b}{\left(2c+a\right)^2}+\dfrac{a}{\left(2b+c\right)^2}\right)\ge3\left(a+b+c\right)\)
Cho b > c > d Chứng minh rằng : ( a + b + c )2 > 8( ac + bd ) với mọi a
. Cho a, b, c là các số thực dương có tổng bằng 3.
Chứng minh rằng : \(\sqrt{ab+c}+\sqrt{bc+a}+\sqrt{ca+b}\ge3\sqrt{2abc}\)