Lời giải:
Xét mô-đun 3 cho $n$.
Nếu $n=3k(k\in\mathbb{N}^*$) thì:
$2^n+1=2^{3k}+1=8^k+1\equiv 1^k+1\equiv 2\pmod 7$
$\Rightarrow 2^n+1\not\vdots 7(1)$
Nếu $n=3k+1$ thì:
$2^n+1=2^{3k+1}+1=8^k.2+1\equiv 1^k.2+1\equiv 3\pmod 7$
$\Rightarrow 2^n+1\not\vdots 7(2)$
Nếu $n=3k+2$ thì:
$2^n+1=2^{3k+2}+1=8^k.4+1\equiv 1^k.4+1\equiv 5\pmod 7$
$\Rightarrow 2^n+1\not\vdots 7(3)$
Từ $(1);(2);(3)\Rightarrow 2^n+1\not\vdots 7$ với mọi $n$ nguyên dương.