Chia cả hai vế của đẳng thức ad=bc cho cd \(\neq\)\(0\)
ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}\)
Chia cả hai vế của đẳng thức ad=bc cho cd \(\neq\)\(0\)
ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}\)
Chứng minh rằng từ đẳng thức ad = bc ( c,d \(\ne\) 0 ), ta có thể suy ra được tỉ lệ thức \(\dfrac{a}{c}=\dfrac{b}{d}\)
Chứng tỏ rằng tử đẳng thức \(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\) ta suy ra tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b ≠ 0, c - d ≠ 0) ta có thể suy ra được \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Giúp e câu cuối cùng với ah, 23h58 là e phải nộp ròi ah
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (với \(b+d\ne0\)) suy ra được \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right).\) Chứng minh rằng:
\(\dfrac{11a+17b}{3a-4b}=\dfrac{11c+17d}{3c-4d}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\). Chứng minh rằng:
a) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a,b,c,d\ne0\right)\) ta có thể suy ra :
A) \(\dfrac{a}{c}=\dfrac{d}{c}\)
B) \(\dfrac{a}{b}=\dfrac{d}{c}\)
C) \(\dfrac{d}{b}=\dfrac{c}{a}\)
D) \(\dfrac{a}{d}=\dfrac{b}{c}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) ( với b + d \(\ne\) 0) ta suy ra được \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng ta có tỉ lệ thức sau: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)