ta có : pt \(x^2+bx+c=0\) có \(a=1;b=b;c=c\)
ta có : \(x=\dfrac{-b+\sqrt{b^2-4ac}}{2}=\dfrac{-b+\sqrt{\Delta}}{2a}\) đúng như trong công thức
\(\Rightarrow\left(đpcm\right)\)
ta có : pt \(x^2+bx+c=0\) có \(a=1;b=b;c=c\)
ta có : \(x=\dfrac{-b+\sqrt{b^2-4ac}}{2}=\dfrac{-b+\sqrt{\Delta}}{2a}\) đúng như trong công thức
\(\Rightarrow\left(đpcm\right)\)
Cho a, b thõa : \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2}\). Chứng minh rằng 1 trong 2 PT có nghiệm :\(x^2+ax+b=0\) và \(x^2+bx+a=0\)
Bài 1: Cho a, b, c ≥ 0
Chứng minh rằng: \(a^3+b^3+c^3\ge\dfrac{a^2b+b^2c+c^2a}{3}\)
Bài 2: Với a ≥0. Thì\(\sqrt[3]{a}+\sqrt[3]{a^2}\le1+a\)
Bài 3: Chứng minh rằng:\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge6\). Với x, y, z>0
Cho biểu thức G=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)
Chứng minh rằng nếu 0<x<1 thì G nhận giá trị dương
Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
1) Cho a+b+c = 0. Chứng minh a3+b3+c3 =3abc
Áp dụng tính chất trên giải:
B = \(\dfrac{xy}{z^2}+\dfrac{xz}{y^2}+\dfrac{zy}{x^2}\)
nếu biểu thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
2)Rút gọn
A=\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
Chứng minh rằng nếu \(ax^3=by^3=cz^3\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{c}=1\) thì ta có:
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{ax^2+by^2+cz^2}\)
Cho a, b, c > 0. Chứng minh rằng: \(T=\dfrac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\dfrac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\dfrac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\dfrac{a+b+c}{5}\)
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). Chứng minh rằng \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)