Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Văn Tú

Chứng minh rằng nếu 10x2-10y2-z2=0 thì (7x-3y-2z)=(3x-7y)2

Cho a,b,c là 3 số dương thỏa mãn a3+b3+c3-3abc=0.CMR a=b=c

Viết gọn tổng sau C=(3+2)(32-22)(34+24)(38+28)(316+216)

Akai Haruma
22 tháng 6 2019 lúc 21:22

Bài 1:

Bạn tham khảo tại link sau:

Câu hỏi của hậuu đậuu - Toán lớp 8 | Học trực tuyến

Bài 2:

Ta có:

\(a^3+b^3+c^2-3abc=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)

\(\Leftrightarrow [(a+b)^3+c^3]-3ab(a+b+c)=0\)

\(=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0\)

\(\Leftrightarrow (a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0\)

\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)

Vì $a,b,c$ là 3 số dương nên $a+b+c>0$ . Suy ra $a+b+c\neq 0$

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

\((a-b)^2; (b-c)^2; (c-a)^2\geq 0, \forall a,b,c>0\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\)

\(\Rightarrow a=b=c\)

Ta có đpcm.

Akai Haruma
22 tháng 6 2019 lúc 21:24

Bài 3:

Áp dụng công thức \((a-b)(a+b)=a^2-b^2\):

\(C=(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3-2)(3+2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^2-2^2)(3^2+2^2)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^4-2^4)(3^4+2^4)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^8-2^8)(3^8+2^8)(3^{16}+2^{16})\)

\(=(3^{16}-2^{16})(3^{16}+2^{16})=3^{32}-2^{32}\)


Các câu hỏi tương tự
Trần Văn Tú
Xem chi tiết
Đặng Thị Hông Nhung
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Hồ Quốc Đạt
Xem chi tiết
Mơ Nhùn
Xem chi tiết
Hà Linh
Xem chi tiết
Phạm Hải Nam
Xem chi tiết
Phan Thị Tuyết Ngân
Xem chi tiết
 nguyễn hà
Xem chi tiết