Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Nhật Hạ

Chứng minh rằng: \(\left(x^{4n+2}+2x^{2n+1}+1\right)⋮\left(x^2+2x+1\right)\)

ngonhuminh
1 tháng 3 2018 lúc 17:55

n thuộc N

B=x^2 +2x +1 =(x+1)^2

\(A=x^{4n+2}+2.x^{2n+1}+1=\left(x^{2n+1}\right)^2+2.\left(x^{2n+1}\right)+1=\left(x^{2n+1}+1\right)^2\)

\(\dfrac{A}{B}=\left(\dfrac{x^{2n+1}+1}{x+1}\right)^2\)

với n =0 đúng

n >0 =>2n+1 >=3

=> x^(2n+1) =(x+1).g(x) => dpcm


Các câu hỏi tương tự
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Học đi
Xem chi tiết
Dưa Trong Cúc
Xem chi tiết
Trần Ích Bách
Xem chi tiết