\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right).cosx-1\)
\(=2sin^2\left(2x-\frac{\pi}{4}\right)+4cos2x.sinx.cosx-1\)
\(=1-cos\left(4x-\frac{\pi}{2}\right)+2sin2x.cos2x-1\)
\(=-cos\left(\frac{\pi}{2}-4x\right)+sin4x\)
\(=-sin4x+sin4x=0\)
\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right).cosx-1\)
\(=2sin^2\left(2x-\frac{\pi}{4}\right)+4cos2x.sinx.cosx-1\)
\(=1-cos\left(4x-\frac{\pi}{2}\right)+2sin2x.cos2x-1\)
\(=-cos\left(\frac{\pi}{2}-4x\right)+sin4x\)
\(=-sin4x+sin4x=0\)
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
chứng minh rằng
3) \(\frac{sin2x-sinx}{1-cosx+cos2x}=tanx\)
4) \(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+sin^{2014}x.tan^{2014}x}\)
Chứng minh rằng :
\(\frac{1-cos2x}{2\left(1+cosx\right)}-\frac{2cos^2x-1}{sinx\left(1-cotx\right)}=1+sinx\)
Recall NVL.
Chứng minh: \(\dfrac{sin3x+sinx}{cosx}.\left(tanx+cotx\right)=4\)
chứng minh rằng
1) \(tanx=\frac{1-cos2x}{sin2x}\)
2)\(\frac{sin\left(60^0-x\right).cos\left(30^{0^{ }}-x\right)+cos\left(60^{0^{ }}-x\right).sin\left(30^{0^{ }}-x\right)}{sin4x}=\frac{1}{2sin2x}\)
3) \(4cos\left(60^0+a\right).cos\left(60^0-a\right)+2sin^2a=cos2a\)
Tính giá trị cot8x. Cm biểu thức không phụ thuộc x
\(\dfrac{sin^4x-cos^4x+cos^2x}{2\left(1-cosx\right)\left(1+cosx\right)}\)
Cm \(\dfrac{1+sin2x-cos2x}{1+sin2x+cos2x}\)
Cm biểu thức ko phụ thuộc x
B=\(\dfrac{sin^4x-cos^4x+cos^2x}{2\left(1-cosx\right)\left(1+cosx\right)}\)
Cm
\(\dfrac{1+sin2x-cos2x}{1+sin2x+cos1x}=tanx\)
Trong điều kiện có nghĩa của biểu thức, hãy chứng minh:
\(\frac{1-cosx}{sinx}\left[\frac{\left(1+cosx\right)^2}{sinx^2}-1\right]=2cotx\)
chứng minh rằng
\(\frac{1-sinx-cos2x}{sin2x-cosx}\) = tanx