Lời giải:
Phản chứng. Giả sử chia được như yêu cầu đề bài.
Gọi 18 số tự nhiên liên tiếp đó là $a,a+1,....,a+17$
Nếu $a\equiv 0,2,3,4,...., 18\pmod {19}$ thì trong 18 số $a,a+1,...,a+17$ luôn tồn tại "duy nhất" một số chia hết cho $19$
Do đó khi chia tập 18 số tự nhiên thành 2 tập rời rạc sẽ có 1 tập chia hết cho $19$ và tập còn lại không chia hết cho $19$ nên tích 2 tập đó không thể bằng nhau (1)
Nếu $a\equiv 1\pmod {19}$
$\Rightarrow a(a+1)...(a+17)\equiv 1.2...18=18!\pmod {19}$
Vì tích các phần tử thuộc A bằng tích các phần tử thuộc B và $A,B$ rời rạc nên nên $a(a+1)...(a+17)$ là số chính phương.
Đặt $a(a+1)...(a+17)$ là $x^2$ thì $x^2\equiv 18!\pmod {19}$
Theo định lý Wilson: $18!\equiv -1\pmod {19}$
$\Rightarrow x^2\equiv -1\pmod {19}$
Đến đây xét modulo 19 cho $x$ ta thấy vô lý (2)
Từ (1);(2) ta thấy điều giả sử là sai.
Do đó ta có đpcm.
\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}=\dfrac{1}{b}+\dfrac{b}{a\left(a+b\right)}=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b} |