Lời giải:
Phải thêm điều kiện $a,b,c>0$ nữa bạn nhé
Ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c\)
\(\Leftrightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-a-b-c\geq 0\)
\(\Leftrightarrow \frac{a^2}{b}-(2a-b)+\frac{b^2}{c}-(2b-c)+\frac{c^2}{a}-(2c-a)\geq 0\)
\(\Leftrightarrow \frac{a^2-2ab+b^2}{b}+\frac{b^2-2bc+c^2}{c}+\frac{c^2-2ac+a^2}{a}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq 0\)
(luôn đúng với mọi $a,b,c>0$)
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Hoặc có thể sử dụng BĐT Cauchy như sau:
\(\frac{a^2}{b}+b\geq 2\sqrt{\frac{a^2}{b}.b}=2a\)
\(\frac{b^2}{c}+c\ge 2\sqrt{\frac{b^2}{c}.c}=2b\)
\(\frac{c^2}{a}+a\geq 2\sqrt{\frac{c^2}{a}.a}=2c\)
Cộng theo vế:
\(\Rightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+(a+b+c)\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$