Chứng minh rằng :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
Cmr: \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
a) Tìm x biết: \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
b) So sánh \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\) với 1
c) Tìm GTNN của: A= |x-10|+|x-5|
cm:
\(\dfrac{3}{1^2.2^2}+\dfrac{7}{3^2.4^2}+\dfrac{11}{5^2.6^2}+\dfrac{15}{7^2.8^2}+\dfrac{19}{9^2.10^2}< 1\)
Giúp với ạ
CM:
\(\dfrac{3}{1^2.2^2}+\dfrac{7}{3^2.4^2}+\dfrac{11}{5^2.6^2}+\dfrac{15}{7^2.8^2}+\dfrac{19}{9^2.10^2}< 1\)
Tính:
a,A=\(\dfrac{12^{15}.3^4-4^5.3^9}{27^3.2^{10}-32^3.3^9}\)
b. B= \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^3.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{99}{49^2.50^2}\)
Chứng minh rằng : \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\)
Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....................+\frac{19}{9^2.10^2}< 1\)
chứng minh
M=\(\dfrac{3}{1^2\times2^2}+\dfrac{5}{2^2\times3^2}+\dfrac{7}{3^2\times4^2}+.......+\dfrac{19}{9^2\times10^2}< 1\)