Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(2A=3A-A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)Đặt B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(2B=3B-B=3-\dfrac{1}{3^{99}}\)
Nhận xét : 2B < 3 => B < \(\dfrac{3}{2}\)
=> \(B-\dfrac{100}{3^{100}}< \dfrac{3}{2}\) hay 2A < \(\dfrac{3}{2}\)
=> Đpcm
***tik mik nhé***
Ta có :
3M=1+2/3+3/3^2+...+100/3^99
Suy ra :
2M=1+(1/3+1/3^2+1/3^3+...+1/3^99)-100/3^100
Xét B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
2B=1-\(\dfrac{1}{3^{99}}\)<1/2
Suy ra : 2M<1+1/2 nên M<3/4